首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156610篇
  免费   12625篇
  国内免费   6919篇
电工技术   7870篇
技术理论   5篇
综合类   13093篇
化学工业   25782篇
金属工艺   8035篇
机械仪表   6382篇
建筑科学   9151篇
矿业工程   3148篇
能源动力   4426篇
轻工业   12430篇
水利工程   3391篇
石油天然气   6221篇
武器工业   1086篇
无线电   12943篇
一般工业技术   21025篇
冶金工业   5306篇
原子能技术   2827篇
自动化技术   33033篇
  2024年   183篇
  2023年   1370篇
  2022年   2608篇
  2021年   4258篇
  2020年   3159篇
  2019年   3054篇
  2018年   3302篇
  2017年   3927篇
  2016年   5644篇
  2015年   6754篇
  2014年   8999篇
  2013年   10079篇
  2012年   7951篇
  2011年   8215篇
  2010年   6753篇
  2009年   8362篇
  2008年   8334篇
  2007年   9876篇
  2006年   9514篇
  2005年   7976篇
  2004年   6188篇
  2003年   5959篇
  2002年   5337篇
  2001年   3893篇
  2000年   3969篇
  1999年   3704篇
  1998年   3035篇
  1997年   2875篇
  1996年   3030篇
  1995年   3088篇
  1994年   2866篇
  1993年   1770篇
  1992年   1778篇
  1991年   1289篇
  1990年   967篇
  1989年   850篇
  1988年   787篇
  1987年   474篇
  1986年   333篇
  1985年   474篇
  1984年   522篇
  1983年   499篇
  1982年   404篇
  1981年   461篇
  1980年   332篇
  1979年   164篇
  1978年   137篇
  1977年   101篇
  1975年   70篇
  1962年   64篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
11.
12.
13.
14.
Both fluorescent and luminescent observation are widely used to examine real-time gene expression patterns in living organisms. Several fluuorescent and luminescent proteins with specific optical properties have been developed and applied for simultaneous, multi-color observation of more than two gene expression profiles. Compared to fluorescent proteins, however, the application of multi-color luminescent imaging in living organisms is still limited. In this study, we introduced two-color luciferases into the soil nematode C. elegans and performed simultaneous analysis of two gene expression profiles. Using a green-emitting luciferase Eluc (emerald luciferase) and red-emitting luciferase SLR (stable luciferase red), the expression patterns of two genes were simultaneously observed in single animals from embryonic to adult stages over its whole life span. In addition, dual gene activities were observed at the single embryo level, with the simultaneous observation of morphological changes. These are the first application of a two-color luciferase system into a whole animal and suggest that precise relationship of expression patterns of multiple genes of interest can be analyzed over the whole life of the animal, dependent on the changes in genetic and/or environmental conditions.  相似文献   
15.
Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5′ non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135–555) and RVFV non-coding RNAs, IGR and 5’ NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135–555, IGR, and 5’ NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5’ NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135–555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135–555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135–555 interacting with and unwinding RVFV non-coding regions.  相似文献   
16.
Redox (reduction–oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol–disulphide exchange reactions between PDI and hVKORC1.  相似文献   
17.
Recent progress in the de novo design of self-assembling peptides has enabled the construction of peptide-based viral capsids. Previously, we demonstrated that 24-mer β-annulus peptides from tomato bushy stunt virus spontaneously self-assemble into an artificial viral capsid. Here we propose to use the artificial viral capsid through the self-assembly of β-annulus peptide as a simple model to analyze the effect of molecular crowding environment on the formation process of viral capsid. Artificial viral capsids formed by co-assembly of fluorescent-labelled and unmodified β-annulus peptides in dilute aqueous solutions and under molecular crowding conditions were analyzed using fluorescence correlation spectroscopy (FCS). The apparent particle size and the dissociation constant (Kd) of the assemblies decreased with increasing concentration of the molecular crowding agent, i.e., polyethylene glycol (PEG). This is the first successful in situ analysis of self-assembling process of artificial viral capsid under molecular crowding conditions.  相似文献   
18.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
19.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号